David Matteson
People/Faculty
Professor
Social Statistics
Contact
129 Garden Ave
1196 Comstock Hall
Ithaca, NY 14853
United States
Websites
Overview
My primary research focus has involved the analysis of complex multivariate data and the development of accompanying statistical methodology. My research includes biological, environmental, financial, operational and sociological applications.
Areas of Expertise
Disability
Econometrics
Statistical Theory, Methods, Analysis
Publications
Journal Articles
- David Matteson. (2021). Developing and Evaluating Deep Neural Network-Based Denoising for Nanoparticle TEM Images with Ultra-Low Signal-to-Noise..
- David Matteson. (2021). Predicting poverty and malnutrition for targeting, mapping, monitoring, and early warning.
- David Matteson. (2021). Probabilistic Transformer for Time Series Analysis.
- David Matteson. (2021). Critical Risk Indicators (CRIs) for the electric power grid: A survey and discussion of interconnected effects.
- David Matteson. (2021). Graph-Based Continual Learning.
- David Matteson. (2021). Multivariate random forest prediction of poverty and malnutrition prevalence.
- David Matteson. (2021). Sparse Identification and Estimation of HighDimensional Vector AutoRegressive Moving Averages.
- David Matteson. (2020). .
- Anna Frank, A Lupattelli, David Matteson, H M Meltzer, & H Nordeng. (2020). Thyroid hormone replacement therapy patterns in pregnant women and perinatal outcomes in the offspring.
- D. R. Kowal, David Matteson, & D. Ruppert. (2019). Dynamic Shrinkage Processes. Journal of the Royal Statistical Society: Series B, 81(4), 781-804.
- Megan L Gelsinger, Laura L Tupper, & David Matteson. (2019). Cell Line Classification Using Electric Cell-substrate Impedance Sensing (ECIS). International Journal of Biostatistics, 16(1), 1-12.
- Benjamin B Risk, David Matteson, & David Ruppert. (2019). Linear Non-Gaussian Component Analysis via Maximum Likelihood. Journal of the American Statistical Association, 114(525), 332-343.
- D. R. Kowal, David Matteson, & D. Ruppert. (2019). Functional Autoregression for Sparsely Sampled Data. Journal of Business and Economic Statistics, 37(1), 97-109.
- Wenyu Zhang, Daniel Gilbert, & David Matteson. (2019). ABACUS: Unsupervised Multivariate Change Detection via Bayesian Source Separation.. SIAM International Conference on Data Mining (SDM19), 603-611.
- Ze Jin, Ben Risk, & David Matteson. (2019). Optimization and Testing in Linear Non-Gaussian Component Analysis. Statistical Analysis and Data Mining, 12(3), 141-156.
- Binh Tang, Ying Sun, Yanyan Liu, & David Matteson. (2018). Dynamic Poverty Prediction with Vegetation Index.
- Anna Frank, A Lupattelli, David Matteson, & H Nordeng. (2018). Maternal Use of Thyroid Hormone Replacement Therapy Before, During and After Pregnancy: Agreement Between Self-report and Prescription Records and Group-Based Trajectory Modeling of Prescription Patterns.
- Ze Jin, & David Matteson. (2018). Generalizing distance covariance to measure and test multivariate mutual dependence via complete and incomplete V-statistics. Journal of Multivariate Analysis, 168, 304-322.
- Ze Jin, X. Yan, & David Matteson. (2018). Testing for Conditional Mean Independence with Covariates through Martingale Difference Divergence. Uncertainty in Artificial Intelligence (UAI 2018).
- Tupper Laura, David Matteson, & C. L. Anderson. (2018). Band Depth Clustering for Nonstationary Time Series and Wind Speed Behavior. Technometrics, 60(2), 97-109.
- D. R. Kowal, David Matteson, & D. Ruppert. (2017). A Bayesian Multivariate Functional Dynamic Linear Model. Journal of the American Statistical Association, 112(518), 733-744.
- David Matteson, & Ruey S. Tsay. (2017). Independent Component Analysis via Distance Covariance. Journal of the American Statistical Association, 112(518), 623-637.
- William B Nicholson, David Matteson, & J Bien. (2017). VARX-L: Structured Regularization for Large Vector Autoregressions with Exogenous Variables. International Journal of Forecasting, 33(3), 627-651.
- Wenyu Zhang, Nicholas A James, & David Matteson. (2017). Pruning and Nonparametric Multiple Change Point Detection. IEEE ICDM 12th International Workshop on Spatial and Spatiotemporal Data Mining, 288-295.
- Brad S Westgate, Dawn B Woodard, David Matteson, & Shane G Henderson. (2016). Large-Network Travel Time Distribution Estimation, with Application to Ambulance Fleet Management. European Journal of Operational Research, 252(1), 322-333.
- Benjamin B Risk, David Matteson, David Ruppert, & R. Nathan Spreng. (2016). Spatiotemporal Mixed Modeling of Multi-subject fMRI via Method of Moments. Neuroimage, 142, 280-292.
- Tupper Laura, David Matteson, & John Handley. (2016). Mixed Data and Classification of Transit Stops. 2016 IEEE International Conference on Big Data (Big Data), 2225-2232.
- Zhengyi Zhou, & David Matteson. (2016). Predicting Melbourne Ambulance Demand Using Kernel Warping. Annals of Applied Statistics, 10(4), 1977-1996.
- Nicholas A James, Arun Kejariwal, & David Matteson. (2016). Leveraging Cloud Data to Mitigate User Experience from Breaking Bad: The Twitter Approach. 2016 IEEE International Conference on Big Data (Big Data), 3499-3508.
- Zhengyi Zhou, & David Matteson. (2015). Predicting Spatio-Temporal Ambulance Demand: A Spatio-Temporal Kernel Approach. Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2297-2303.
- Zhengyi Zhou, David Matteson, Dawn B Woodard, Shane G Henderson, & Athanasios C Micheas. (2015). A Spatio-Temporal Point Process Model for Ambulance Demand. Journal of the American Statistical Association, 110(509), 6-15.
- Benjamin B Risk, David Matteson, David Ruppert, Ani Eloyan, & Brian Caffo. (2014). An Evaluation of Independent Component Analyses with an Application to Resting State fMRI. Biometrics, 70(1), 224-236.
- W. A. Erickson, S. von Schrader, S. M. Bruyere, S. Van Looy, & David Matteson. (2014). Disability-Inclusive Employer Practices and Hiring of Individuals with Disabilities. Rehabilitation Education, 28(4), 309-328.
- Nicholas A James, & David Matteson. (2014). ecp: An R Package for Nonparametric Multiple Change Point Analysis of Multivariate Data. Journal of Statistical Software, 62(7), 1-25.
- David Matteson, & Nicholas A James. (2014). A Nonparametric Approach for Multiple Change Point Analysis of Multivariate Data. Journal of the American Statistical Association, 109(505), 334-345.
- David Matteson, Nicholas A James, William B Nicholson, & Louis C Segalini. (2013). Locally Stationary Vector Processes and Adaptive Multivariate Modeling. Acoustics, Speech and Signal Processing, IEEE, 8722-8726.
- Brad S Westgate, Dawn B Woodard, David Matteson, & Shane G Henderson. (2013). Travel Time Estimation for Emergency Vehicles using Bayesian Data Augmentation. Annals of Applied Statistics, 7(2), 1139-1161.
- Scott H Holan, W H Yang, David Matteson, & C K Wikle. (2012). An Approach for Identifying and Predicting Economic Recessions in Real-Time Using Time-Frequency Functional Models. Applied Stochastic Models in Business and Industry, 28(6), 485-499.
- David Matteson, & Ruey S. Tsay. (2011). Dynamic Orthogonal Components for Multivariate Time Series. Journal of the American Statistical Association, 106(496), 1450-1463.
- Dawn B Woodard, David Matteson, & Shane G Henderson . (2011). Establishing Stationarity of Count-Valued Time Series Models using Drift Conditions. Electronic Journal of Statistics, 5, 800-828.
- David Matteson, Matthew W. McLean, Dawn B Woodard, & Shane G Henderson. (2011). Forecasting Emergency Medical Service Call Arrival Rates. Annals of Applied Statistics, 5(2B), 1379-1406.
- David Matteson, & David Ruppert. (2011). GARCH Models of Dynamic Volatility and Correlation. IEEE Signal Processing Magazine, 28(5), 72-82.
Software
- Ze Jin, S. Yao, David Matteson, & X. Shao. (2018). EDMeasure -- Energy-Based Dependence Measures.
- Ines Wilms, Jacob Bien, & David Matteson. (2017). bigtime -- A Package for Obtaining Sparse Estimates of Large Time Series Models.
- William B Nicholson, Jacob Bien, & David Matteson. (2015). bigVAR – Dimension Reduction Methods for Multivariate Time Series.
- Benjamin B Risk, Nicholas A James, & David Matteson. (2015). steadyICA – ICA and Tests of Independence via Multivariate Distance Covariance.
- Nicholas A James, & David Matteson. (2013). ecp – An R Package for Nonparametric Multiple Change Point Analysis of Multivariate Data.
Conference Proceedings
- Ines Wilms, Sumanta Basu, Jacob Bien, & David Matteson. (2017). Interpretable Vector AutoRegressions with Exogenous Time Series.
Book Chapters
- David Matteson, Nicholas James, & William Nicholson. (2016). Statistical Measures of Dependence For Financial Data. In Financial Signal Processing and Machine Learning. John Wiley & Sons.
- Zhengyi Zhou, & David Matteson. (2016). Temporal and Spatio-Temporal Models for Ambulance Demand. In Healthcare Data Analysis. John Wiley & Sons.
Textbooks
- David Ruppert, & David Matteson. (2015). Statistics and Data Analysis for Financial Engineering. Springer.
Honors and Awards
- Best Paper Award, National Association of Rehabilitation Research and Training Centers Association. 2024
- Faculty Early Career Development (CAREER) Award, National Science Foundation. 2024
- Faculty Research Award, PARC/Xerox Foundation. 2024
- Best Academic Paper Award, R/Finance 2013, Applied Finance with R, International Center for Futures and Derivatives. 2024
- Best Academic Paper Award, R/Finance 2011, Applied Finance with R, International Center for Futures and Derivatives. 2024
- Paul Meier Fellowship, Department of Statistics, University of Chicago. 2003
- Statistical Consulting Award, Department of Statistics, University of Chicago. 2024
Edit this profile if it's yours.